COMBINATORICA

Akadémiai Kiadó – Springer-Verlag

LOCAL STRUCTURE OF GRAPHS WITH $\lambda = \mu = 2$, $a_2 = 4$

K. COOLSAET

Received October 22, 1993

Several properties of graphs with $\lambda = \mu = 2, a_2 = 4$ are studied. It is proved that such graphs are locally unions of triangles, hexagons or heptagons. As a consequence, a distance regular graph with intersection array (13, 10, 7; 1, 2, 7) does not exist.

1. Introduction

In this paper we study graphs Γ which satisfy the following axioms:

- 1. $(\lambda = 2.)$ For any two adjacent vertices in Γ there are exactly two vertices adjacent to both.
- 2. $(\mu = 2.)$ For any two vertices at distance 2, there are exactly two vertices adjacent to both.
- 3. $(a_2 = 4.)$ For any pair of vertices $p, q \in \Gamma$ at distance 2, there are exactly 4 vertices adjacent to q and at distance 2 from p.

We use the following notations:

$x \sim y$	$x, y \in \Gamma$ are adjacent,
d(x, y)	distance between two vertices,
$\Gamma(x)$	set of vertices adjacent to x ,
$\Gamma_2(x)$	set of vertices at distance 2 of x

We shall also assume that Γ is connected. An immediate consequence of the axioms is the following theorem.

Theorem 1. If Γ is connected, then Γ is regular, i.e., every vertex has the same degree k.

Mathematics Subject Classification (1991): 05 C 75

Proof. This is true for every amply regular graph with $\mu > 1$. (See for instance [1], prop. 1.1.2.)

2. Examples

The following are examples of distance-regular graphs with $\lambda = \mu = 2$ and $a_2 = 4$. These examples are taken from [1].

- 1. The complete graph K_4 on 4 vertices satisfies the axioms in a trivial way.
- 2. There are two strongly regular graphs with parameters $v = 16, k = 6, \lambda = \mu = 2$ (and hence $a_2 = 4$). They are the 4×4 grid (i.e., the direct product $K_4 \times K_4$) and the Shrikhande graph. Note that the Shrikhande graph is locally a hexagon.
- 3. The direct products of a number of copies of the K_4 graph and/or the Shrikhande graph are called Doob graphs and also satisfy our axioms. These graphs are distance regular.
- 4. There is a unique distance regular graph with intersection array (7,4,1;1,2,7) on 24 vertices. This graph also satisfies our axioms. It is an antipodal 3-cover of K_8 and can be constructed as follows: vertices are elements of $(\mathbb{Z}/7\mathbb{Z})^2 \setminus (0,0)$, where we identify (a,b) and (-a,-b). Two vertices (a,b) and (c,d) are adjacent iff $ad-bc=\pm 1$. Note that this graph is locally a heptagon.

3. Local structure of Γ

In what follows we assume that Γ has only a finite number of vertices.

A connected induced subgraph of Γ of degree 2 and size n is called a true n-gon. Note that for any $x \in \Gamma$, the subgraph induced on $\Gamma(x)$ is always a disjoint union of true polygons.

Most proofs in this paper make use of the following important lemma:

Lemma 1. Consider a true pentagon $p_0p_1 \cdots p_4$ in Γ . Let q be the unique vertex $\neq p_0$ adjacent to both p_1 and p_4 . If q is not adjacent to p_0 then q must be adjacent to both p_2 and p_3 .

Proof. Assume that $p_0 \not\sim q$.

Because $\lambda = 2$, there are 2 vertices a, b adjacent to q and p_1 and 2 vertices c, d adjacent to p_0 and p_1 . Any vertex belonging to both $\{a, b\}$ and $\{c, d\}$ is adjacent to both p_0 and q. But also p_1 and p_4 are adjacent to p_1 and q, and hence, because $\mu = 2$, the sets $\{a, b\}$ and $\{c, d\}$ must be disjoint. As $p_0 \not\sim q$, also p_0 and q do not belong to $\{a, b, c, d\}$, and hence a, b, c, d, p_0, q are all different.

Now, $a,b,c,d,p_2 \in \Gamma(p_1) \cap \Gamma_2(p_4)$, and because $a_2 = 4$ this implies that p_2 is one of a,b,c,d. As $p_2 \not\sim p_0$ we must have $p_2 \sim q$. Interchanging the role of p_1 and p_4 in the above argument proves that also p_3 is adjacent to q.

Choose a vertex in Γ and denote it by the symbol ∞ . Choose a vertex 0 adjacent to ∞ . There is a unique true polygon in $\Gamma(\infty)$ that contains the vertex 0. Denote the size of this polygon by n, and denote the successive vertices of the polygon by successive elements $0,1,2,\ldots,n-1$ of $\mathbb{Z}/n\mathbb{Z}$. We shall use the notational convention $\bar{a} \stackrel{\text{def}}{=} -a \pmod{n}, \forall a$.

Consider any pair of vertices $x, y \in \mathbb{Z}/n\mathbb{Z}$. Apart from ∞ there is exactly one other vertex adjacent to both x and y. Denote this vertex by xy. Clearly xy = yx.

Now if x and y differ $2 \pmod{n}$ then xy is adjacent to ∞ and denotes the same vertex as $\frac{1}{2}(x+y)$. Conversely, if xy, $x \neq y$ is adjacent to ∞ then $\lambda = 2$ implies $xy \in \{x-1, x+1\}$ and $xy \in \{y-1, y+1\}$ and therefore $x-y=\pm 2$.

Also, because $\lambda = \mu = 2$, if xy = zu then the set $\Gamma(xy) \cap \Gamma(\infty) = \{x, y, z, u\}$ must have size 2, and hence x = z, y = u or x = u, y = z.

The set of vertices constructed sofar consists of the vertex ∞ , all vertices of the given n-gon in $\Gamma(\infty)$ and all vertices adjacent to exactly 2 non-adjacent vertices of that n-gon. We denote this set by $N(\infty,0)$. The above argument shows that $|N(\infty,0)| = (n^2 - n + 2)/2$.

The notational scheme used above depends on the choice of the vertex 0 adjacent to ∞ (which could have been chosen in n ways) and the choice of the vertex 1 adjacent to both 0 and ∞ (which could have been done in 2 ways). As a consequence, the proofs in this section remain valid when one of the transformations $x \mapsto \bar{x}$ or $x \mapsto x+a \pmod{n}$ for fixed a, is applied to all numbers involved. Whenever we use this argument in the proofs below, we will use the clause 'by symmetry'.

Lemma 2. If n > 5 then 01, 03, 23 form a triangle.

Proof. Consider the pentagon 0,1,2,3,03. This is a true pentagon. Consider the vertex $x \neq 0$ which is adjacent to both 1 and 03. By Lemma 1 there are two possibilities: x is adjacent to 0, or x is adjacent to both 2 and 3. In the latter case, x must be either ∞ (which is however not adjacent to 03, as n > 5) or 23 (which cannot be adjacent to 1). Hence x is adjacent to 0. As a consequence x is either ∞ or 01, and the first case is easily excluded because n > 5 and therefore $03 \not\sim \infty$. This proves that $01 \sim 03$.

By symmetry also $12 \sim 14$.

Consider the pentagon 1,2,3,03,01. Again this is a true pentagon. Now consider the vertex $y \neq 1$ adjacent to both 2 and 01. If $y \sim 1$ then y = 12 and then three vertices 2,14,01 are adjacent to both 1 and 12, contradicting $\mu = 2$. Hence $y \not\sim 1$ and then by Lemma 1, $y \sim 3$ and $y \sim 03$. Because also $y \sim 2$ we must have $y = \infty$ or y = 23. The first case is easily excluded.

Lemma 3. If n > 5, then the vertices $\infty, 1, 01, 03, 04, \dots, 0\overline{4}, 0\overline{3}, 0\overline{1}, \overline{1}, \infty$ form an n-gon in $\Gamma(0)$.

Proof. Lemma 2 proves that $01 \sim 03$ and by symmetry that $0\bar{1} \sim 0\bar{3}$.

Now take any $k \in \mathbb{Z}/n\mathbb{Z}, k \neq \bar{3}, \bar{2}, \bar{1}, 0, 1, 2$ and consider the pentagon 0, 0k, k, k+1, 0(k+1). If 0k and 0(k+1) are not adjacent, then this is a true pentagon. In this

case Lemma 1 implies that ∞ is adjacent to either 0k or 0(k+1), a contradiction. Hence 0k is adjacent to 0(k+1). This proves the lemma.

Lemma 4. The size n of a polygon in $\Gamma(\infty)$ is either 3,5,6 or 7.

Proof. Clearly $n \neq 4$, for otherwise $\infty, 1$ and 3 would be adjacent to both 0 and 2. It remains to be proved that n < 8. Assume n > 6.

In Lemma 3 it was proved that $0\overline{4} \sim 0\overline{3}$. By symmetry this proves that $(0+4)(\overline{4}+4) \sim (0+4)(\overline{3}+4)$, i.e., $04 \sim 14$. As a consequence 14 is adjacent to both 1 and 04 and therefore plays the same role in N(0,1) as did 03 in $N(\infty,0)$. In a similar way $1\overline{2}$ in N(0,1) corresponds to 01 in $N(\infty,0)$ (as $10 \sim 1\overline{2}$ by Lemma 2).

Applying Lemma 2 to N(0,1) shows that $1\bar{2} \sim 14$. Also, applying Lemma 3 to N(1,2) yields $12 \sim 14 \sim 15$. Hence, the vertices $1\bar{2},12,15$ are adjacent to both 1 and 14 and therefore (as $\mu=2$) $1\bar{2}$ must be equal to either 12 or 15. This implies n=7.

4. The case n > 3

Theorem 2. If Γ contains a hexagon each vertex of which is adjacent to the same vertex $\infty \in \Gamma$, then this hexagon belongs to an induced subgraph isomorphic to the Shrikhande graph.

Proof. The lemmas of the previous section prove that the subgraph induced on $N(\infty,0)$ has (at least) the following adjacencies (we only list adjacencies for typical vertices, others can be obtained by symmetry):

vertex	adjacent to							
∞	$\begin{bmatrix} 0 \\ \infty \\ 0 \\ 0 \end{bmatrix}$	1	2	3	4	5		
0	∞	1	01	03	05	5		
01	0	1	14	45	23	03		
03	0	01	23	3	34	05		

Define a graph Δ with 24 vertices denoted by $\infty,0,\ldots,5,01\ldots,45$ and with adjacencies as in the table above. The subgraph induced on $N(\infty,0)$ always contains an isomorphic copy of Δ . In particular, the Shrikhande graph, which satisfies the conditions of this theorem, must contain a copy of Δ . Now both Δ and the Shrikhande graph are graphs with 16 vertices and degree 6. Hence Δ is isomorphic to the Shrikhande graph.

As both Γ and Δ satisfy $\lambda = \mu = 2$, no further adjacencies can occur in $N(\infty,0)$.

A similar theorem can be proved for n=7. We need some lemmas:

Lemma 5. If n = 7, then 01, 23, 45, 06, 12, 34, 56 is a true heptagon and there is a vertex ∞' to which each of its vertices are adjacent.

Proof. By Lemma 2 we know that $01 \sim 23$, and by symmetry, the given 7 vertices determine a heptagon.

Now consider the pentagon 01,23,3,34,56. We first prove that this is a 'true' pentagon. The vertices 03 and 2 are adjacent to the pair 3,23, hence $23 \not\sim 34$ (for $\lambda=2$). Both 23 and 03 are adjacent to the pair 01,3. Hence $34 \not\sim 01$. Both 34 and 36 are adjacent to the pair 3,56, hence $23 \not\sim 56$.

Define ∞' to be the vertex $\neq 3$ adjacent to both 23 and 34. The two vertices adjacent to the pair 3,23 are 2 and 03 and the two vertices adjacent to the pair 3,34 are 4 and 36. Hence no vertex is adjacent to 23,3 and 34 and in particular $\infty' \not\sim 3$. By Lemma 1, ∞' is adjacent to 01,23,34 and 56.

By symmetry, there is a vertex ∞'_1 adjacent to 23,45,56 and 01, and it is easily seen that this implies $\infty' = \infty'_1$. Proceeding in this way we may prove that ∞' is adjacent to every vertex of the given heptagon. As a consequence, the heptagon is 'true'.

Lemma 6. If n = 7, then 03,04,14,15,25,26,36 is a true heptagon and there exists a vertex ∞'' to which each of its vertices are adjacent.

Proof. The proof is similar as in the previous lemma, using the pentagon 01,03,04,14,15 with ∞'' adjacent to 03 and 15. We leave the rest of the proof to the reader.

Theorem 3. If Γ contains a heptagon each vertex of which is adjacent to the same vertex $\infty \in \Gamma$, then this heptagon is contained in an induced subgraph of size 24 which is distance regular with parameters (7,4,1;1,2,7).

Proof. The lemmas of this section and the previous prove that the subgraph induced on $N(\infty) \cup \{\infty', \infty''\}$ has (at least) the following adjacencies (we only list adjacencies for typical vertices, other adjacencies can be obtained by symmetry):

vertex	adjacent to								
∞	0	1	2	3	4	5	6		
∞'	01	23	45	06	12	5 34	56		
∞''	03	04	14	15	25	26	36		
0	32	1	01	03	01	0e	Ĉ		
01	0	1	15	56	∞'	23	03		
03	0	01	23	3	36	∞''	04		

We proceed in a similar way as in Theorem 2. Consider the graph Δ with vertices denoted by $\infty, \infty', \infty'', 0, \dots, 6, 01, \dots, 56$ and with adjacencies defined as in the table above. The subgraph induced on $N(\infty,0)$ always contains an isomorphic copy of Δ .

In particular, the unique distance regular graph Γ' with parameters (7,4,1;1,2,7) satisfies the conditions of this theorem, and therefore contains a copy

of Δ . Both graphs Γ' and Δ have 24 vertices and degree 7. Hence they must be isomorphic. It also easily follows that no further adjacencies between the 24 vertices in $N(\infty,0)$ exist.

As a consequence of Theorems 2 and 3 we may prove that the case n=5 cannot occur:

Theorem 4. Γ cannot contain a pentagon in which each vertex is adjacent to the same vertex ∞ .

Proof. As before we number the vertices of the pentagon as 0,1,2,3,4. Now $\Gamma(0)$ contains the following path of length 4: $04,4,\infty,1,01$. We shall first prove that $01 \not\sim 04$.

Assume the contrary. Define $S_1 \stackrel{\text{def}}{=} \Gamma(1) \cap \Gamma_2(4)$. Note that $3,04 \in S_1$. Because d(1,4) = 2 we have $|S_1| = 4$. Denote the remaining two vertices by x_1, y_1 . In a similar way, define $S_4 \stackrel{\text{def}}{=} \Gamma(4) \cap \Gamma_2(1)$. Note that $2,01 \in S_4$ and denote the remaining two vertices of S_4 by x_4, y_4 .

Now, because $\mu = 2$, for every vertex $q \in S_1$ there are two adjacent vertices in $S_4 \cup \{0, \infty\}$ and conversely for every vertex $q \in S_4$ there are two adjacent vertices in $S_1 \cup \{0, \infty\}$. With the assumption above, this is only possible when both x_1 and y_1 are joined to both x_4 and y_4 . But because also $x_4 \sim 4 \sim y_4$, this contradicts $\mu = 2$.

Hence $01 \not\sim 04$. As a consequence the path $04,4,\infty,1,01$ in $\Gamma(0)$ is part of an n-gon with n>5. By Lemma 4 and Theorems 2 and 3 it follows that $N(0,\infty)$ must be part of either a Shrikande graph, or a distance regular graph with parameters (7,4,1;1,2,7). But then the subgraph induced on $\infty,0,\ldots,4$ must be contained in such a graph, which is a contradiction, for neither graph contains such a pentagon.

As an immediate consequence we may strengthen Lemma 4 to the following theorem:

Theorem 5. Let ∞ be a given vertex in a graph Γ with parameters $\lambda = \mu = 2, a_2 = 4$, then $\Gamma(\infty)$ is a disjoint union of triangles, hexagons and/or heptagons.

5. Application

Theorem 6. There is no distance regular graph Γ with parameters (13, 10, 7; 1, 2, 7).

Proof. The parameters of this graph imply $\lambda = \mu = 2, a_2 = 4$.

Consider any vertex $\infty \in \Gamma$. By Theorem 5, $\Gamma(\infty)$ is a union of triangles, hexagons and/or heptagons. As $|\Gamma(\infty)| = 13$ is not divisible by 3, there must be at least one heptagon. By Theorem 3, Γ must have an induced subgraph Δ with parameters (7,4,1;1,2,7).

For any vertex $x \in \Delta$ define N_x to be the set of vertices of $\Gamma - \Delta$ adjacent to x. We have $|N_x| = 13 - 7 = 6$. Consider two different vertices $x, y \in \Delta$. We shall prove that N_x and N_y are disjoint.

Assume $z \in N_x \cap N_y$. If $d(x,y) \le 2$ then there are 2 vertices adjacent to both x and y in Δ plus at least one extra vertex z outside. This contradicts $\lambda = \mu = 2$. Now, assume the distance between x and y is 3 in Δ , then consider $u \in \Gamma(y) \cap \Gamma_2(x)$. There are 4 vertices in Δ belonging to $\Gamma(u) \cap \Gamma_2(x)$. But in Γ also z belongs to $\Gamma(u) \cap \Gamma_2(x)$. This contradicts $a_2 = 4$.

Hence, all N_x are disjoint. This implies that Γ must contain at least $|\Delta| + 6|\Delta| = 24 \cdot 7 = 168$ vertices. But $|\Gamma| = 144$. Hence Γ does not exist.

Acknowledgments. I would like to thank Prof. Dr. F. De Clerck and Prof. Dr. H. Van Maldeghem for many useful suggestions and for careful reading of the manuscript.

References

[1] A. E. Brouwer, A. M. Cohen, and A. Neumaier: Distance-regular Graphs, Springer Verlag, Berlin, 1989.

Kris Coolsaet

University of Ghent,
Dept. of Pure Mathematics
and Computer Algebra,
Galglaan 2, B-9000 Gent, Belgium,
kc@cage.rug.ac.be